13-16
a) $\hat{P}=282$ (stat)
b) $p=.25$

CLT says the sump dist. of \hat{p} will be: approx. normal $25(60,000) \geq 10 \quad 60800(1-25) \geq 10$

have a mean $\left(\mu_{\hat{p}}\right)$ of .25
. and a st. $\operatorname{dev}\left(\sigma_{\hat{p}}\right)$ of .0018 $\longleftarrow \sqrt{\frac{.25(1-.25)}{60000}}$
C)

$$
z=\frac{.282-.25}{.0018}=17.78
$$

d) YES! almost impossible to get $a \hat{p}=.282$ is $p=.25$
e)
e) Same except:

$$
\begin{array}{lll}
500(.25) \geq 10 & 500(1-25) \geq 10 & z=\frac{.282-.25}{.0194}=1.65 \\
125 \geq 10 & 375 \geq 10 & z=10
\end{array}
$$

$\sigma_{\hat{p}}=\sqrt{\frac{.25(1-.25)}{500}}=.0194$
no, getting 282 is not over ty surprising if $\begin{array}{r}p=25 \text { (less than } \\ 2 \text { st. der.) }\end{array}$
f) smaller sample size has less var.,
so . 282 is 'farther away' statisticilly.

13-18
a) $\sqrt{\frac{.15(1-.15)}{n}}=\sigma_{\hat{p}}$
b)
 $\begin{aligned} & 959 \text { whin } 2 \text { st. der. } \\ & .15+2\left(\sigma_{\hat{P}}\right)=.20 \\ & 2\left(\sigma_{\hat{\theta}}\right)=.05 \\ & \sigma_{\hat{p}}=.025\end{aligned}$

$$
\sqrt{\frac{.15(1-.15)}{n}}=.025
$$

$$
\left(\sqrt{\frac{.1275}{n}}\right)^{2}=(.025)^{2}
$$

$$
\frac{.1275}{n}=\frac{.000625}{1}
$$

$$
n=1,275
$$

